Phys 410 Spring 2013 Lecture #28 Summary 3 April, 2013

Up to this point we have considered Newtonian dynamics and Lagrangian dynamics. Now we consider Hamiltonian dynamics. The Lagrangian is written in terms of n generalized coordinates and their time derivatives. This set of parameters constitutes a 2n – dimensional **state space**. The Hamiltonian is written in terms of the generalized coordinates and their conjugate momenta, defined as $p_i = \partial \mathcal{L}/\partial \dot{q}_i$. This set of 2n parameters constitutes **phase space**.

One can solve the *n* canonical momentum equations for \dot{q}_i in terms of the coordinates q_i and momenta p_i to arrive at $\dot{q}_i = \dot{q}_i(q_i, p_i)$. With this, one can express the Hamiltonian in terms of coordinates and momenta alone. Taking the derivative of the Hamiltonian with respect to q_i and p_i , one finds Hamilton's equations: $\dot{q}_i = \partial \mathcal{H}/\partial p_i$ and $\dot{p}_i = -\partial \mathcal{H}/\partial q_i$, i = 1, ..., n. This is a set of 2*n* first-order differential equations, as opposed to the set of *n* second-order differential equations one gets from Lagrange's equations.

The Hamiltonian dynamics formulation is useful for quantum mechanics and for classical statistical mechanics. As a way of solving classical mechanics problems it has few advantages over Lagrangian dynamics.